Theoretical Study of Near 3D Sound Field Reproduction Based on Wave Field Synthesis

T. Kimura, Y. Yamakata and M. Katsumoto (National Institute of Information and Communications Technology)

1. INTRODUCTION

More realistic form of communication

Enjoying 3D television

Communicatio

by 3D image

program in the living room

• 3D television

- 3D teleconferencing
- 3D sound field reproduction

Ultra-Realistic Communication

- Binaural
- We focus on this technique • Transaural
- Stereo dipole
- Wave field synthesis
- Boundary surface control

Aim of Study

uture image of 3D video

Wave Field Synthesis

- Conventional system
 - Loudspeakers are placed around listeners
 - Listeners cannot listen to sounds around sound sources
- Theory has been studied

Proposed system

- Loudspeakers are placed around sound sources
- Listeners can listen to sounds around sound sources
- Theory has not been studied

Near 3D sound field reproduction technique based on wave field synthesis is proposed...Two methods (dipole control method and directional point control method)

2. PRINCIPLE OF NEAR 3D SOUND FIELD REPRODUCTION

2.1. Wave Field Synthesis

- Kirchhoff-Helmholtz integral equation

2.2. Dipole Control Method

image of a newly-

developed produc

Approximation is introduced Kirchhoff-Helmholtz integral equation

P(z)

Sound pressures of space V is reproduced if two types of sources are played at the neighbor of *M*

Diagram of Dipole Control Method

- Sounds are recorded by microphone pairs
- 2. Sounds are played by loudspeaker pairs

Original Sound Field

3. Wave fronts are reproduced on the outside of loudspeaker array

points \mathbf{r}_i • Monopole source (position \mathbf{r}_i , amplitude $P(\mathbf{r}_i^+, \omega)$)

Fresnel-Kirchhoff diffraction formula

Sound pressures of space V is reproduced if

directional monopole sources are played at M points \mathbf{r}_i

• Monopole source (directivity D_i , amplitude $P(\mathbf{r}_i, \omega)$)

 $P(\mathbf{r},\omega) = \frac{jk}{4\pi} \sum_{i=1}^{M} P(\mathbf{r}_i,\omega) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_i|}}{|\mathbf{r}-\mathbf{r}_i|} (\cos\theta_i - \cos\theta_{i0}) \Delta S_i$

 $\approx \frac{jk}{4\pi} \sum_{i=1}^{M} P(\mathbf{r}_i, \omega) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_i|}}{|\mathbf{r}-\mathbf{r}_i|} (\cos \theta_i - 1) \Delta S_i$

 $\approx \frac{jk}{4\pi} \sum_{i=1}^{M} D_i P(\mathbf{r}_i, \omega) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_i|}}{|\mathbf{r}-\mathbf{r}_i|} \Delta S_i$

D_i: Directivity of loudspeakers

• Monopole source (position \mathbf{r}_i^+ , amplitude $-P(\mathbf{r}_i, \omega)$)

$$\mathbf{r},\omega) = \frac{1}{4\pi} \sum_{i=1}^{M} \left\{ P(\mathbf{r}_{i}^{+},\omega) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_{i}^{-}|}}{|\mathbf{r}-\mathbf{r}_{i}^{-}|} - P(\mathbf{r}_{i}^{-},\omega) \frac{e^{-jk|\mathbf{r}-\mathbf{r}_{i}^{+}|}}{|\mathbf{r}-\mathbf{r}_{i}^{+}|} \right\} \frac{\Delta S_{i}}{\Delta d_{i}}$$

k: Wave number **r**: Position vector on space V \mathbf{r}_i : Position vector of the outside neighbor point on S_i \mathbf{r}_i^+ : Position vector of the inside neighbor point on S_i

4. Listeners feel that sound is playing on the inside of loudspeaker array

Reproduced Sound Field

Diagram of Directional Point Control Method

- Sounds are recorded by microphones
- Sounds are played by directional loudspeakers
- Wave fronts are reproduced on the outside of loudspeaker array
- 4. Listeners feel that sound is playing on the inside of loudspeaker array

3. COMPUTER SIMULATION

3.1. Simulation Environment Original Sound Field

Source signal s(t)

Dipole Control Method

Sound Intensity Vector

Cross-spectral method

sound sources

Phase nversion

Sound intensity vector I(r, f)

Correspond to the arrival direction of

Imaginary Part

Imaginary Part

Componen

Component

Recorded signals $x_i^+(t), x_i^-(t)$

Sound pressure $p(\mathbf{r}, f, t)$

Directional Point Control Method

Recorded signals $x_i(t)$

• Sine-wave (amplitude *A*, frequency *f*) $s(t) = A \sin 2\pi f t$

Sound pressure $p_0(\mathbf{r}, f, t)$ $p_{0}(\mathbf{r}, f, t) = \frac{1}{d_{0}} s\left(t - \frac{d_{0}}{c}\right) = \frac{A}{d_{0}} sin\left\{2\pi f\left(t - \frac{d_{0}}{c}\right)\right\}$

r: Position vector of synthesis points $d_0(=|\mathbf{r}-\mathbf{r}_0|)$: Distance between sound sources and synthesis points

 \mathbf{r}_{0} : Position vector of sound sources *c*: Sound velocity

Parametric Condition

Source amplitude (A)	1
Source frequency (f)	125, 250, 500, 1000, 2000, 4000, 8000, 16000 Hz
Source position (\mathbf{r}_0)	$(0, 0, 0)^{T} (0.3, 0, 0)^{T}$ $(0, 0.3, 0)^{T} (0, 0, 0.3)^{T}$
Sound velocity (c)	340 m/s
Total number of control points (<i>M</i>)	162
Radius of control points (<i>r</i>)	0.4 m
Total number of synthesis points (<i>N</i>)	162
Radius of synthesis points (<i>R</i>)	0.8 m
Unit normal vector (n _i)	r _i / r _i
Neighbor distance	0.002 m

$p(\mathbf{r}, f, t) = \sum_{i=1}^{M} \left\{ \frac{1}{d_i^-} x_i^+ \left(t - \frac{d_i^-}{c} \right) - \frac{1}{d_i^+} x_i^- \left(t - \frac{d_i^+}{c} \right) \right\}$ $= \sum_{i=1}^{M} \left| \frac{A}{d_i^{-} d_{i0}^{+}} \sin \left\{ 2\pi f \left(t - \frac{d_i^{-} + d_{i0}^{+}}{c} \right) \right\} \right|$

M: Total number of loudspeaker pairs $d_i^+(=|\mathbf{r}-\mathbf{r}_i^+|), d_i^-(=|\mathbf{r}-\mathbf{r}_i^-|)$: Distance between loudspeaker pairs and synthesis points

$x_{i}(t) = \frac{1}{d_{i0}} s\left(t - \frac{d_{i0}}{c}\right) = \frac{A}{d_{i0}} sin\left\{2\pi f\left(t - \frac{d_{i0}}{c}\right)\right\}$

Sound pressure $p(\mathbf{r}, f, t)$

 $d_{i0}(=|\mathbf{r}_i - \mathbf{r}_0|)$: Distance between sound sources and microphones **r**_{*i*}: Position vector of microphones *M*: Total number of loudspeakers $d_i(=|\mathbf{r}-\mathbf{r}_i|)$: Distance between loudspeakers and synthesis points *D_i*: Directivity of loudspeakers

3.2. Simulation Results

- SNR of the RMSs of sound pressure
- Performance of the sound pressure distribution

SNR(f) = 10log₁₀ $\frac{\sum_{\mathbf{r}} \{p_0(\mathbf{r}, f)\}^2}{\sum_{\mathbf{r}} \{p(\mathbf{r}, f) - p_0(\mathbf{r}, f)\}^2}$

 $p_0(\mathbf{r}, f)$: RMS of the sound pressure in the original sound field $p(\mathbf{r}, f)$: RMS of the sound field in the reproduced sound field

$$p_0(\mathbf{r}, f) = \sqrt{\frac{1}{T}} \int_0^T \{p_0(\mathbf{r}, f, t)\}^2 dt$$

$$p(\mathbf{r}, f) = \sqrt{\frac{1}{T} \int_0^T \left\{ p(\mathbf{r}, f, t) \right\}^2 dt}$$

SNR of the RMSs of Sound Pressure

Intensity direction error $(IDE)\theta(f)$ Performance of the arrival direction of sound sources

$$\theta(f) = \sqrt{\frac{1}{N} \sum_{\mathbf{r}} \left[\cos^{-1} \left\{ \frac{\mathbf{I}(\mathbf{r}, f) \cdot \mathbf{I}_0(\mathbf{r}, f)}{|\mathbf{I}(\mathbf{r}, f)| |\mathbf{I}_0(\mathbf{r}, f)|} \right\} \right]^2}$$

 $I_0(\mathbf{r}, f) = \{I_{x0}(\mathbf{r}, f), I_{v0}(\mathbf{r}, f), I_{z0}(\mathbf{r}, f)\}^T$ Sound intensity vector in the original sound field $I(\mathbf{r}, f) = \{I_{x}(\mathbf{r}, f), I_{y}(\mathbf{r}, f), I_{z}(\mathbf{r}, f)\}^{T}$:

Sound intensity vector in the reproduced sound field N(=162): Total number of synthesis points

4. CONCLUSION

- Near 3D sound field reproduction techniques based on wave field synthesis were proposed
 - Two proposed methods...dipole control method and directional point control method
- Computer simulation was performed to evaluate the performance of two proposed methods
 - The dipole control method performed very well
 - The directional point control method performed satisfactorily if the directivity of loudspeakers was unidirectional and shotgun
- Future Works...Manufacture of microphone array and loudspeaker array