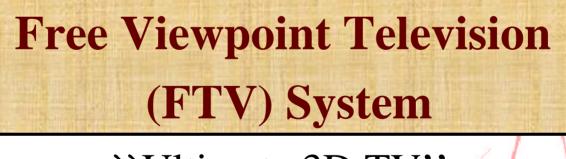


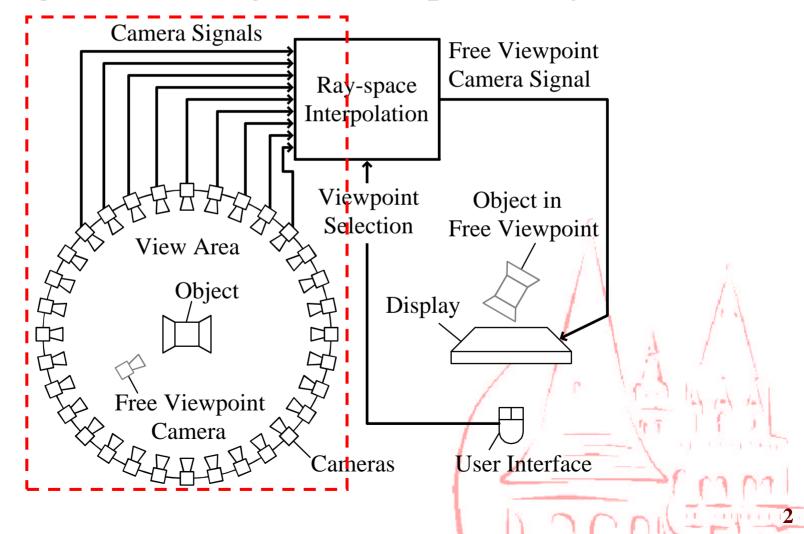
RBA-VA 617-0


Sound Field Auralization System in Free Listening Positions Using Wave Field Synthesis and Head Related Transfer Function

Toshiyuki Kimura
Wataru Mizuno
Takanori Nishino
Katsunobu Itou
Kazuya Takeda

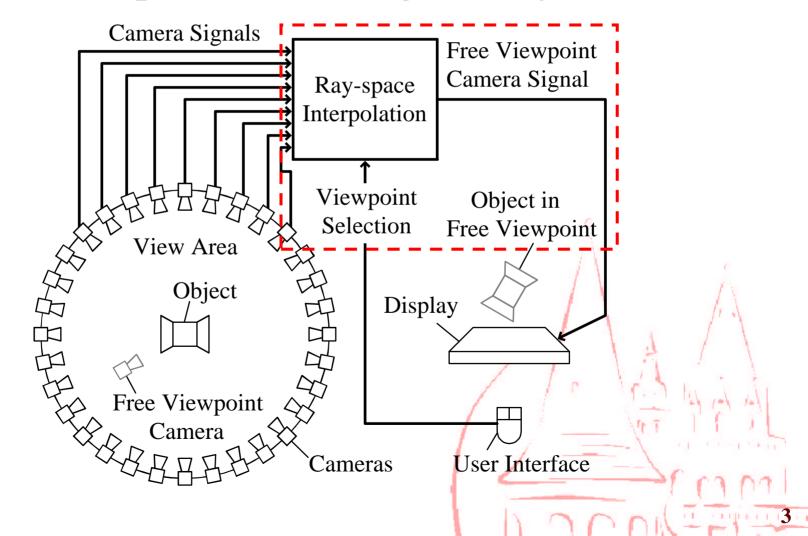
Introduction

- More realistic communication system
 - Visual display technique
 - Sound field auralization technique
- Special visual display technique

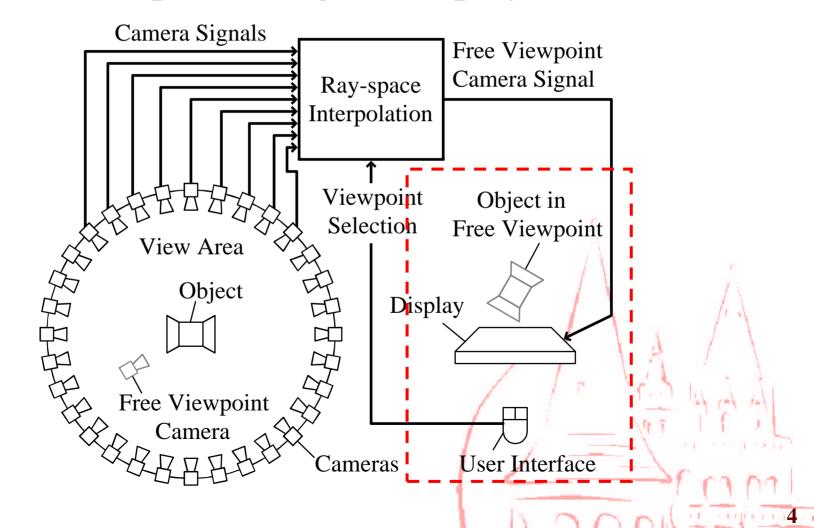


"Ultimate 3D TV"

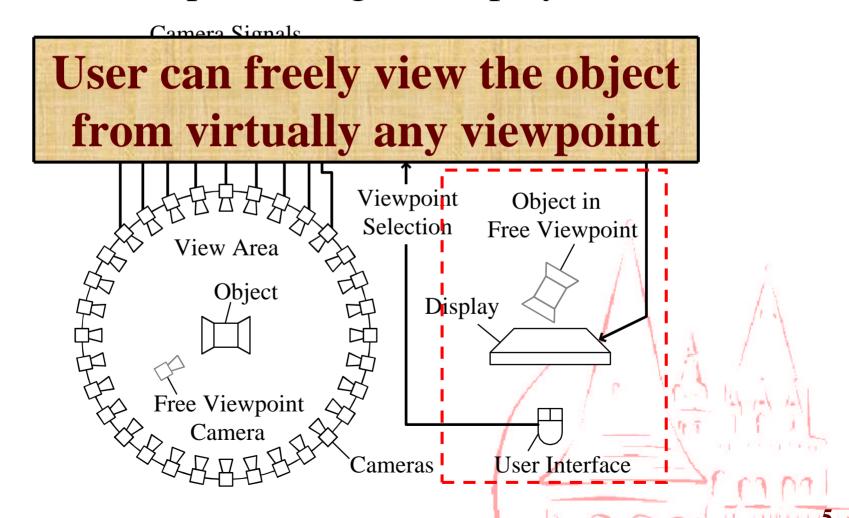
FTV System


• Images of the object are captured by cameras

FTV System


• Free viewpoint camera signal is synthesized

FTV System


• Free Viewpoint image is displayed

FTV System

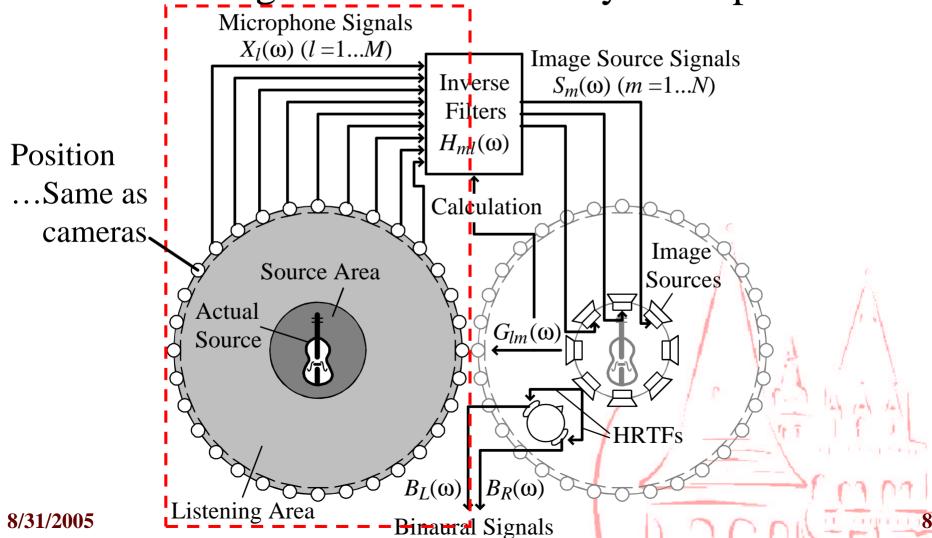
• Free Viewpoint image is displayed

Budapest

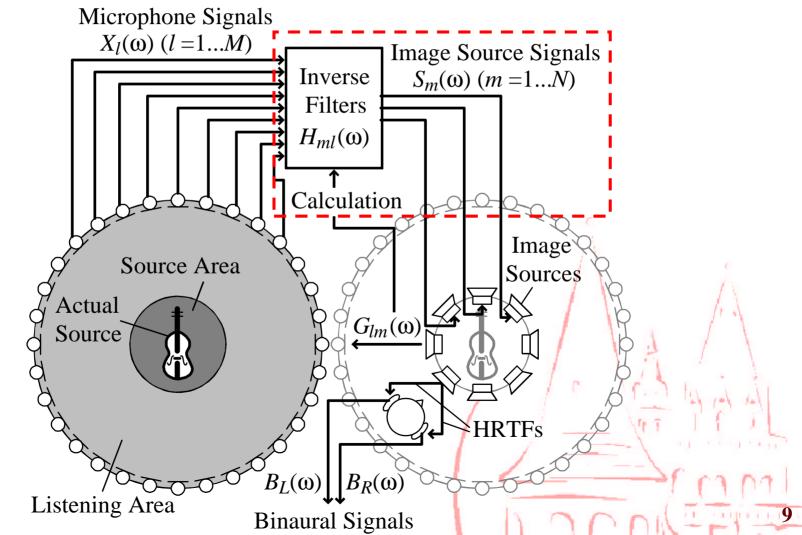
Aim of Study

- Add sound information to FTV system
 - Develop a more realistic television system

- Sound field auralization system in free listening positions
 - Head related transfer functions (HRTFs)
 - Wave field synthesis (WFS)

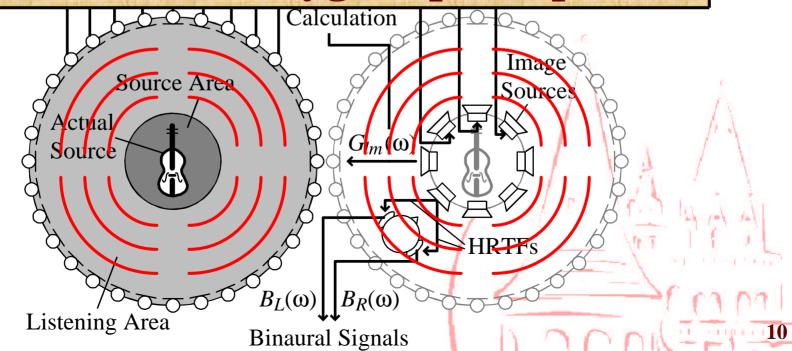

2. Sound Field Auralization System

Overview


Sound signals are recorded by microphones

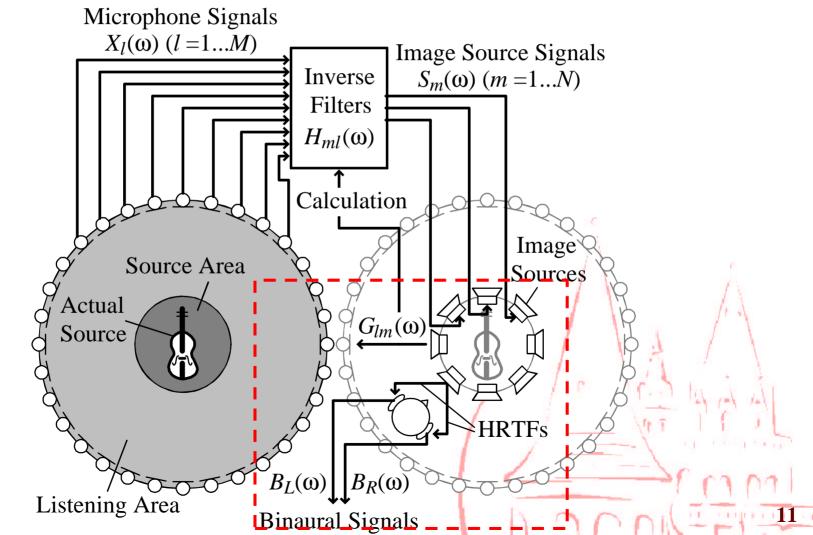
Overview

• Image source signals are estimated



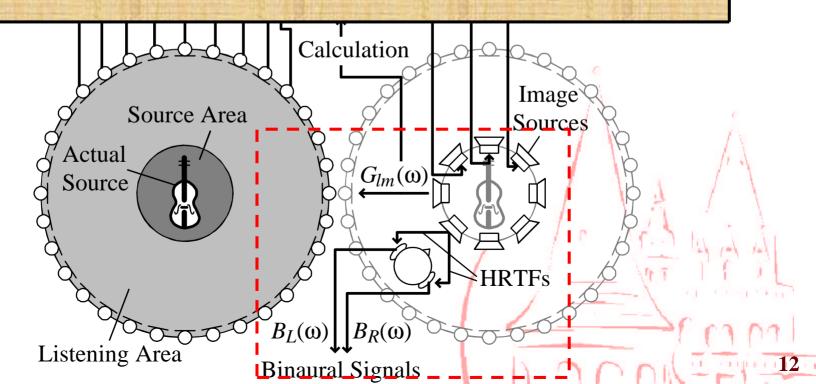
Overview

• Image source signals are estimated


Wave fronts of the listening area are synthesized by image sources based on Huygens principle

Overview

• Binaural signals are synthesized



Overview

• User listens to binaural signals by headphones

Microphone Signals

User can freely enjoy the sound from virtually any listening position

Estimation of Image Source Signals

- Microphone signals $X_l(\mathbf{w})$
 - Convolve room transfer functions (RTFs) $G_{l\nu}(\mathbf{w})$ to image source signals $S_k(\mathbf{w})$

$$X_l(\mathbf{w}) = \sum_{k=1}^{N} G_{lk}(\mathbf{w}) S_k(\mathbf{w})$$
 N: The number of image sources

- Image source signals $S'_{m}(\mathbf{w})$
 - Convolve inverse transfer functions (ITFs) $H_{ml}(\mathbf{w})$ to microphone signals $X_l(\mathbf{w})$

$$S'_{m}(\mathbf{w}) = \sum_{l=1}^{M} H_{ml}(\mathbf{w}) X_{l}(\mathbf{w})$$
 M: The number of microphones

Budapest

8/31/2005

Inverse Transfer Functions

Be calculated from room transfer functions

$$G(w)H(w) = D(w)$$

$$\mathbf{G}(\mathbf{w}) = \begin{pmatrix} G_{11}(\mathbf{w}) & \cdots & G_{M1}(\mathbf{w}) \\ \vdots & \ddots & \vdots \\ G_{1N}(\mathbf{w}) & \cdots & G_{MN}(\mathbf{w}) \end{pmatrix} \mathbf{H}(\mathbf{w}) = \begin{pmatrix} H_{11}(\mathbf{w}) & \cdots & H_{N1}(\mathbf{w}) \\ \vdots & \ddots & \vdots \\ H_{1M}(\mathbf{w}) & \cdots & H_{NM}(\mathbf{w}) \end{pmatrix}$$

$$\mathbf{D}(\mathbf{w}) = \begin{pmatrix} e^{-j\mathbf{w}\frac{n_0}{F_s}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{-j\mathbf{w}\frac{n_0}{F_s}} \end{pmatrix} \mathbf{G}(\mathbf{w}): \text{Room transfer function matrix}$$

$$\mathbf{H}(\mathbf{w}): \text{Inverse transfer function matrix}$$

$$n_0: \text{Delay samples}$$

$$F_s: \text{Sampling frequency}$$

$$\mathbf{D}(\mathbf{w}) = \begin{bmatrix} e^{-j\mathbf{w}\frac{\mathbf{v}}{F_s}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{-j\mathbf{w}\frac{\mathbf{v}}{I}} \end{bmatrix}$$

$$\mathbf{H}(\mathbf{w}) = \mathbf{G}^{+}(\mathbf{w})\mathbf{D}(\mathbf{w})$$

Budapest

Synthesis of Binaural Signals

- Binaural signals $B_I(\mathbf{w})$, $B_R(\mathbf{w})$
 - Convolve HRTFs $I_L(d_m, \mathbf{f}_m, \mathbf{w}), I_R(d_m, \mathbf{f}_m, \mathbf{w})$ to image source signals $S_m(\mathbf{w})$

$$B_{L}(\mathbf{w}) = \sum_{m=1}^{N} q(\Delta_{m}) I_{L}(d_{m}, \mathbf{f}_{m}, \mathbf{w}) S_{m}(\mathbf{w})$$

$$B_{R}(\mathbf{w}) = \sum_{m=1}^{N} q(\Delta_{m}) I_{R}(d_{m}, \mathbf{f}_{m}, \mathbf{w}) S_{m}(\mathbf{w})$$

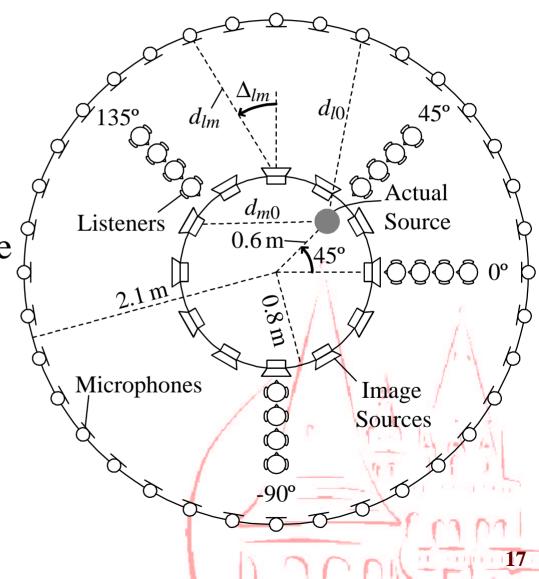
$$q(\Delta_{m}) = \begin{cases} \cos \Delta_{m} & |\Delta_{m}| \leq 90^{\circ} \\ 0 & |\Delta_{m}| > 90^{\circ} \end{cases}$$

$$q(\Delta_m) = \begin{cases} \cos \Delta_m & |\Delta_m| \le 90 \\ 0 & |\Delta_m| > 90 \end{cases}$$

 d_m : Distance between the mth image source and the listening position

 f_m : Azimuth angle of the *m*th image source

 Δ_m : Azimuth angle of the listening position in the *m*th image source $q(\Delta_m)$: Directivity function of the mth image source


3. Evaluation of Performance

Experimental Arrangement

- Sound field
 - free space
- Actual source
 - 0.6 m distance
 - 45° azimuth angle
- Array's Radius
 - Microphones
 - 2.1 m
 - Image sources
 - 0.8 m

Synthesis of Microphone Signals

- Microphone signals $x_l(n)$
 - Be calculated from actual source signal

$$x_l(n) = \frac{1}{d_{l0}} s_0 \left[n - \text{round} \left(\frac{d_{l0} F_s}{c} \right) \right] \quad (l = 1...M)$$

 $s_0(n)$: Actual source signal

Piano sound (sampling frequency...32 kHz, duration...5 s)

 d_{10} : Distance between the actual source and the *l*th microphone

Number of image sources (N)	12, 18, 24, 36, 48
Number of microphones (M)	$N, N \times 2, N \times 3, N \times 4$
Sampling Frequency (F_s)	/32 kHz
Sound velocity (c)	340 m/s

Room Transfer Functions

- Room transfer functions between image sources and microphones $g_{lm}(n)$
 - Be calculated by computer

$$g_{lm}(n) = \frac{q(\Delta_{lm})}{d_{l0}} \mathbf{d} \left[n - \text{round} \left(\frac{d_{lm} F_s}{c} \right) \right] \quad (m = 1...N, l = 1...M)$$

d(n): Dirac's delta function

 d_{lm} : Distance between the *m*th image source and the *l*th microphone

 Δ_{lm} : Azimuth angle of the *l*th microphone in the *m*th image source

 $q(\Delta_{lm})$: Directivity function of the mth image source

Inverse Transfer Functions

- Inverse transfer functions $h_{ml}(n)$
 - Be calculated from room transfer functions
 Calculation conditions of ITFs

FFT frame length	2048 samples
Calculated bandwidth	250 Hz-13333Hz
Delay samples (n_0)	512 samples
ITF length	1024 samples

- Image source signals $s_m(n)$
 - Convolve inverse transfer functions (ITFs) $h_{ml}(n)$ to microphone signals $x_l(n)$

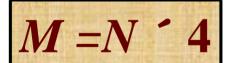
Objective Evaluation

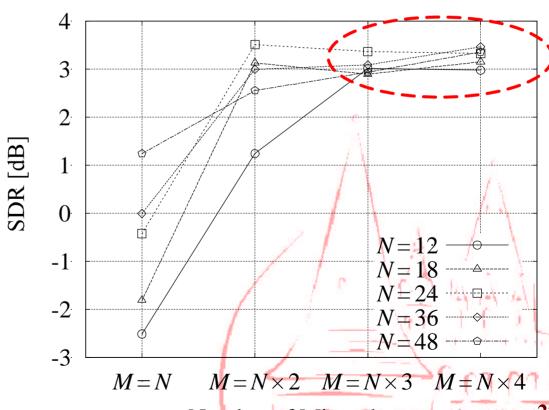
- Signal-to-Deviation Ratio (SDR)
 - Estimation accuracy of image source signals

SDR[dB] =
$$10\log_{10} \frac{\sum_{m=1}^{N} \sum_{n} \{s'_{m} (n-n_{0})\}^{2}}{\sum_{m=1}^{N} \sum_{n} \{s'_{m} (n-n_{0}) - s_{m} (n)\}^{2}}$$

 $s_m(n)$: The *m*th estimated image source signal $s'_m(n)$: The *m*th reference image source signal

$$s'_{m}(n) = \frac{1}{d_{m0}} s_{0} \left[n - \text{round} \left(\frac{d_{m0} F_{s}}{c} \right) \right]$$


 d_{m0} : Distance between the actual source and the *m*th image source



SDR Results

- Number of microphones (M)
- Number of image sources (N)
 - $M > N \times 3...$ SDRs are constant

HRTFs of Close Distances

- Piezoelectric dodecahedral loudspeaker
- Distance
 - From 0.2 to 1 m
- Azimuth angle
 - 1° interval

	1909
Room temperature	24.0 °C
Background noise level	13.8 dB(A)
Sound pressure level	69.0 dB(A)
Sampling frequency	48 kHz
TSP signal length	32768 samples
HRTF length	512 samples

Budapest

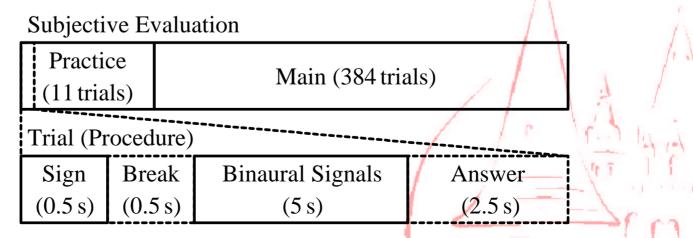
Synthesis of Binaural Signals

- Binaural signals $b_I(n)$, $b_R(n)$
 - Convolve measured HRTFs $i_I(d_m, \mathbf{f}_m, n)$, $i_R(d_m, \mathbf{f}_m, n)$ to image source signals $s_m(n)$

$$\begin{vmatrix} b_{L}(n) = \sum_{m=1}^{N} q(\Delta_{m})[i_{L}(d_{m}, \mathbf{f}_{m}, n) * s_{m}(n)] \\ b_{R}(n) = \sum_{m=1}^{N} q(\Delta_{m})[i_{R}(d_{m}, \mathbf{f}_{m}, n) * s_{m}(n)] \end{vmatrix} q(\Delta_{m}) = \begin{cases} \cos \Delta_{m} & |\Delta_{m}| \leq 90^{\circ} \\ 0 & |\Delta_{m}| > 90^{\circ} \end{cases}$$

$$q(\Delta_m) = \begin{cases} \cos \Delta_m & |\Delta_m| \le 90 \\ 0 & |\Delta_m| > 90 \end{cases}$$

 d_m : Distance between the mth image source and the listening position


 f_m : Azimuth angle of the *m*th image source

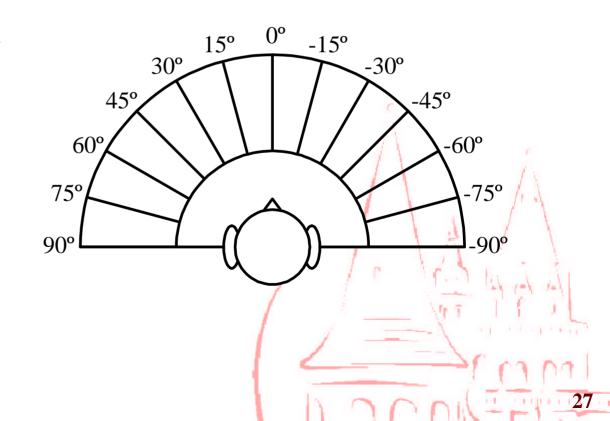
 Δ_m : Azimuth angle of the listening position in the *m*th image source $q(\Delta_m)$: Directivity function of the mth image source

Subjective Evaluation

- Localization test
 - Accuracy of the directional perception
 - Subject
 - 5 male students
 - Listening equipment
 - Headphone (Audio-Technica ATH-A1000)

Design

- Comparison of localization results
 - 5 Image source conditions (*N*=12, 18, 24, 36, 48)

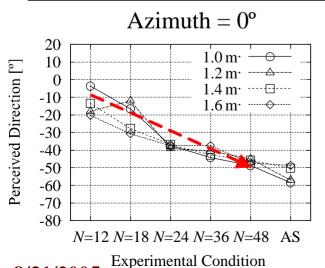

Actual Source condition

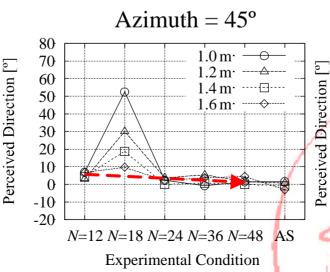
	Factor	Level
Practice	= 1 condition	Actual Source
(11)	× 11 directions	-75°, -60°,, 60°, & 75°
Main	= 6 conditions	<i>N</i> =12, 18, 24, 36, 48, & AS
(384)	× 4 distances	1.0, 1.2, 1.4, & 1.6 m
	× 4 azimuths	0, 45, 135, & -90°
	× 4 repetitions	2

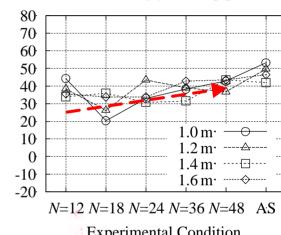
Procedure

- Instruction
 - Identify the direction of sound
 - Mark on an answer sheet
- Answer sheet
 - 15° interval

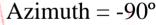
Perceived Direction

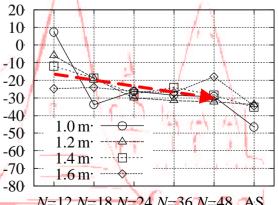

Forum Acusticum **Budapest**


Localization Results


• Perceived direction approaches to that of Azimuth = 135°

the actual source


The directional perception is the same if the number of image sources is sufficient



Experimental Condition

N=12 N=18 N=24 N=36 N=48 AS

Experimental Condition

Conclusion

- Sound field auralization system in free listening positions was proposed
- SDR results
 - Image source signals can be estimated if the number of microphones is sufficient
- Localization results
 - The directional perception can be reproduced if the number of image sources is sufficient
- Future works
 - Actual environment, 3D sound field