

3D Sound Field Reproduction Using Directional Microphones

2011/09/04-07 Toshiyuki Kimura National Institute of Information and Communications Technology (NICT), Japan

1

Content of Talk

- First topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Wave Field Synthesis (WFS) technique
- Second topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Boundary Surface Control (BoSC) technique

Content of Talk

- First topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Wave Field Synthesis (WFS) technique
- Second topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Boundary Surface Control (BoSC) technique

Wave Field Synthesis (WFS) Technique

- Original sound field
 - Sound is recorded by <u>planar</u> microphone array
- Reproduced sound field
 - Recorded sound is replayed by <u>planar</u> loudspeaker array
 - Wave fronts are accurately reproduced based on Huygens' principle

Problem of Surround System Using WFS

- Original sound field
 - <u>Surrounded</u> microphone array is used
- Reproduced sound field
 - Recorded sound comes from all directions
 - Listeners feel the reverberant sound field in spite of a free field
- <u>It needs to use directional microphones</u>

Diagram of Proposed System Using WFS (1)

- Directional microphones are placed and sound is recorded
 - Directional microphones are directed toward the outside of the control area

Diagram of Proposed System Using WFS (2)

- Recorded signals are played by loudspeakers
 - The position of loudspeakers are the same as the directional microphones
 - Listeners feel as if they are listening to the sound in the original sound field

Sound Fields

- Square arrays (two-dimension)
- Sound fields: free field
- Directivity of Microphones
 - Toward the outside of control area

Parametric Condition

Source amplitude (A)	1
Source frequency (f)	125, 177, 250, 354, 500, 707, 1000,1414, 2000, 2828, 4000, 5657, 8000 Hz
Source distance (d)	3, 10, 100 m
Source azimuth (θ)	0, 45°
Sound velocity (c)	340 m/s
Radius of areas (r)	2 m
Microphone number (<i>M</i>)	800
Microphone directivity $(D_m(\mathbf{r}_0 \mathbf{r}_i))$	Omnidirectional, Unidirectional, Shotgun

NÍCŢ

9

2011/9/4-7

Results of Proposed System Using WFS

- Omnidirectional microphone
 - Differences are not white
- Unidirectional, shotgun microphone
 - Differences are white
 - Wave fronts are accurately reproduced

Results of Signal-to-Noise Ratios

SNR =
$$\frac{1}{F} \sum_{f} \left[10 \log_{10} \frac{\sum_{\mathbf{r}} \{p_0(\mathbf{r}, 0)\}^2}{\sum_{\mathbf{r}} \{p(\mathbf{r}, 0) - p_0(\mathbf{r}, 0)\}^2} \right]$$

- Unifirectional, shotgun microphone
 Higher than omnidirectional microphone
- Wave fronts can be more accurately reproduced by using unidirectional or shotgun microphones

Content of Talk

- First topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Wave Field Synthesis (WFS) technique
- Second topic
 - 3D sound field reproduction system using
 - Directional microphones
 - Boundary Surface Control (BoSC) technique

Problem of Proposed System Using WFS

- Display should be placed for A-V system
 - On the surface
 - <u>Display cannot be</u> <u>placed</u>
 - Outside the surface
 - Loudspeakers come into the listeners' field of view
- It needs to develop another system

Diagram of Proposed System Using BoSC (1)

- Directional microphones are placed and sound is recorded
 - Directional microphones are directed toward the outside of the control area

Diagram of Proposed System Using BoSC (2)

- Directional microphones and loudspeakers are placed
 - The position and direction of directional microphones are the same as in the recording
 - Loudspeaker array envelops microphone array

Reproduced Sound Field

Diagram of Proposed System Using BoSC (3)

 Acoustic transfer functions are measured and the inverse filters are calculated

Diagram of Proposed System Using BoSC (4)

- Recorded signals are filtered by the inverse filters, and the filtered signals are played by loudspeakers
 - Listeners feel as if they are listening to the sound in the original sound field

Diagram of Proposed System Using BoSC (5)

- It is possible to construct an audio-[™] visual system
 - Screen or display of the visual system can be placed on or outside the boundary surface

Original Sound Field

- <u>Square-prism</u> arrays (three-dimension)
- Control area

- Size...2 m width, 2 m depth, 1 m height

Microphone array (placed on 6 planes)
– Size...2 m width, 2 m depth, 1 m height

 $r_{mx} = 2 \text{ m}$

Reproduced Sound Field

- Listening area
 - Same size as control area
 - Size...2 m width, 2 m depth, 1 m height
- Loudspeaker array (placed on 6 planes)
 - Size...4 m width, 4 m depth, 2 m height

20

Parametric Condition

Source amplitude (A)	1
Source frequency (f)	63, 125, 250, 500, 1000 Hz
Source distance (d)	2, 10, 50 m
Source direction vector (u)	$(1,0,0)^{T}(1/\sqrt{2},1/\sqrt{2},0)^{T}(2/3,2/3,1/3)^{T}$
Sound velocity (c)	340 m/s
Microphone directivity $(D_m(\mathbf{r}_0 \mathbf{r}_i))$	Shotgun
Microphone number (M)	576
Microphone interval (Δr_m)	0.1667 m
Loudspeaker number (N)	2304
Loudspeaker interval (Δr_s)	0.1667 m

V/*C*).

Results of Conventional System Using WFS

- Wave fronts are not accurately reproduced
 - Differences are not white

Results of Proposed System Using BoSC

- Wave fronts are accurately reproduced
 - Differences are white
- Proposed system using BoSC can reproduce more accurate wave fronts than conventional system using WFS

Results of Signal-to-Noise Ratios

- 3D sound field reproduction system using directional microphones and Wave Field Synthesis (WFS) technique
 - Sound field can be accurately reproduced by using directional microphones
- 3D sound field reproduction system using directional microphones and Boundary Surface Control (BoSC) technique
 - Sound field can be accurately reproduced even if loudspeakers were not placed on the boundary surface