

Subjective Effect of Synthesis Conditions in 3D Sound Field Reproduction System Using a Few Transducers and Wave Field Synthesis

<u>Toshiyuki Kimura¹²</u>, Munenori Naoe¹²,

Yoko Yamakata¹ and Michiaki Katsumoto¹

¹Universal Media Research Center, National Institute of Information and Communications Technology, Japan

²Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan

3D Sound Field Reproduction System

- More realistic sensation than conventional systems
 - TV-phone, 5.1ch audio
- Tele-conference
 - People in different places feel
 <u>as if they have a meeting</u>

in the same room

- Tele-ensemble
 - People in different places feel

as if they play a music

in the same concert hall

Wave Field Synthesis System

- Original sound field
 - Sound is captured by the microphone array
- Reproduced sound field
 - Captured sound is replayed by the loudspeaker array
 - Wave fronts are reproduced
 based on Kirchhoff-Helmholtz
 integral equation
- Feature
 - Multiple listeners can move or turn their heads while listening to a sound

Conventional Systems

- Boundary Surface Control (BoSC) system
 - BoSC principle
 - Based on Kirchhoff-Helmholtz integral equation and uses inverse filters
 - 70 transducers are used
 - Loudspeakers are visible in the listener's field of vision
 - It is very difficult to construct an audio-visual system

 The number of transducers should be reduced in order to construct an A-V system

Diagram of Our Proposed System

- Original sound field
 - Sound is captured by8 microphones
- Reproduced sound field
 - Captured sound is replayed by 8 loudspeakers
 - 3D sound field is reproduced
- Feature
 - Listener can turn their heads while listening to a sound
 - Loudspeakers are not visible in the listener's field of vision

Aim of Study

- We have evaluated the localized performance of the proposed system by the localization test
 - 12 directions' performance was good
 - Remaining 5 directions' performance was not good
- Synthesis conditions were **<u>fixed</u>** in a past test
 - Size of cubic arrays
 - Directivity of microphones
- Effect of synthesis conditions is evaluated by the localization test

Multichannel Signals

• Signals $x_i(n)$ are synthesized on a computer

$$-i=1...8 \quad x_i(n) = \frac{D_i}{d_i} s \left\{ n - round\left(\frac{d_i F_s}{c}\right) \right\}$$

- s(n): Sound source signal
- F_s(=48 kHz): Sampling frequency
- c(=340 m/s): Sound velocity
- d_i : Distance between the sound source and microphones
- D_i: Microphone directivity
 - Unidirectional
 - Shotgun

IUCS 2009

Experimental Environment

- 25 loudspeakers
 - 8 loudspeakers (white)
 - For cubic loudspeaker array
 - 0.4 m or 0.5 m on a side 16
 - 17 loudspeakers (gray)
 - For control condition
- Listening position
 - Center of a sphere
- Room conditions
 - Reverberation time: 115 ms
 - Background noise level: 20 dB(A)
 - Sound pressure level: 60 dB(A) (listening position)

17

Synthesis Conditions

- Synthesis condition (iii)
 - Condition of the previous localization test
- The localized performance was compared among the four synthesis conditions

	Microphone directivity	Array size
(i)	Unidirectional	0.4 m
(ii)	Unidirectional	0.5 m
(iii)	Shotgun	0.4 m
(iv)	Shotgun	0.5 m

Experimental Condition

- Control condition (a)
 - Sound source signal is directly replayed from one loudspeaker selected from 17 loudspeakers
 - Listeners feel that there are one sound source in the position of white loudspeakers

Experimental Condition(Cont')

- Four conditions (b)-(e)
 - 8ch signals are replayed from 8 loudspeakers
 - Listeners feel as if there are one sound image in the position of gray circles

Experimental Flowchart

- Listeners
 - 7 males
 - 3 females
- Source
 - White noise

	Element	Note
Practice(34)	= 2 conditions x 17 directions	Experimental conditions (a) & (b)
Main(170)	= 5 conditions x 17 directions x 2 repetitions	Experimental conditions (a)-(e)

Experimental Procedure

- Instruction
 - Listeners report the perceived direction of sound
 - Listeners list the number of the direction in an answer sheet
 - Listeners are allowed
 to turn their heads freely
 while listening to the sounds

Results in Each Synthesis Condition

Accuracy rate[%] = $\frac{\text{The number of correct answers}}{\text{The number of presentations}}$

- Synthesis condition (iii) is best
- Accuracy rate of all synthesis conditions

Lower than that of the control condition

*x*²-test Result in Each Direction

- Significant difference of 1% level in (iii)
 - Yes: 6 directions (No. 4, 6, 8, 10, 12, and 17)
 - No: other 11 directions

Performance of (iii) is best in 11 directions

	Control	(i)	(ii)	(iii)	(iv)		Control	(i)	(ii)	(iii)	(iv)
1	100%	70%	65%	95%	88%	9	100%	100%	98%	98%	100%
2	98%	73%	88%	85%	88%	10	100%	35%	28%	38%	18%
3	100%	75%	55%	88%	65%	11	100%	95%	98%	95%	100%
4	98%	75%	63%	70%	70%	12	100%	45%	35%	53%	40%
5	100%	98%	100%	100%	98%	13	100%	80%	88%	90%	83%
6	100%	50%	33%	40%	30%	14	98%	93%	90%	95%	95%
7	100%	100%	100%	100%	100%	15	95%	78%	88%	85%	90%
8	100%	40%	43%	33%	28%	16	88%	50%	55%	65%	78%
						17	95%	53%	65%	48%	73%

Answer Rates of Six Directions

- Six directions
 - Behind and downward direction (No. 4)
 - Left direction (No. 6)
 - Front direction (No. 8)
 - Right direction (No. 10)
 - Behind direction (No. 12)
 - Top direction (No. 17)
- Definition of answer rates

Answer rate[%] = $\frac{\text{The number of answers}}{\text{The number of presentations}}$

Answer Rates in Downward Direction

Sound images are biased toward the upper direction

IUCS 2009

Answer Rates in Horizontal Direction

 Sound images are blurred toward the vertical direction

Answer Rates in Top Direction

 Sound images are biased toward the forward direction

Conclusions

- In 3D sound field reproduction system using 8 transducers and wave field synthesis, the effect of synthesis conditions was evaluated by the localization test
- Cubic array size: 0.4 m, shotgun microphones
 - The localized performance was best in 11 directions of 17 directions used in the test
 - The bias and blur of sound images occurred in remaining 6 directions
- Future works
 - Improvement of performance in remaining 6 directions

