

Comparative Performance Evaluation of Near 3D Sound Field Reproduction System with Directional Loudspeakers and Wave Field Synthesis

Toshiyuki Kimura¹, Yoko Yamakata², Michiaki Katsumoto¹, Takuma Okamoto³, Satoshi Yairi⁴, Yukio Iwaya³, Yo-iti Suzuki³ ¹NICT, ²Kyoto Univ., ³Tohoku Univ., ⁴Sendai NCT

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Ultra-Realistic Communication

- Future 3D television
 - 3D video and audio appear in a 3D space
 - People view an object anywhere in its vicinity
 - Without glasses
 - 3D sound field reproduction systems without headphones must be developed

IUCS 2010

Wave Field Synthesis (WFS) System

- Original sound field
 - Sound is recorded by the microphone array

IUCS 2009

- Reproduced sound field
 - Recorded sound is played Channel Signals
 - 3D sound field is reproduced by Kirchhoff-Helmholtz integral equation
- Multiple listeners can listen to a sound without headphones

Original Sound Field

WFS System for Future 3DTV

- Conventional system
 - Loudspeakers are placed around the listeners
 - Sound scene is reproduced
- Proposed system
 - Loudspeakers are placed around sound sources
 - Radiated sound field is reproduced

Conventional System

Proposed System The pianist The violinist is playing is playing near me ! near me !

IUCS 2010

Aim of Study

- We have proposed and developed the WFS system for future 3DTV
 - Near 3D sound field reproduction system using directional loudspeakers and wave field synthesis
- Evaluation of the performance of the sound image localization in the developed system
 - Estimation of the position of sound images
 - Computer simulation
 - Acoustical measurement

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Diagram of Proposed System

- Original sound field
 - Sound is recorded by microphones placed around sound sources
- Reproduced sound field
 - Recorded sound is played by directional loudspeakers
 - 3D sound field is reproduced
- Listeners feel that sound sources are playing in the array

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Surrounding Microphone Array

- Surrounding microphone array room
 - Equipped in RIEC, Tohoku Univ.
 - Reverberation time...about 150 ms
- 157 omnidirectional microphones
 - B&K: Type 4951
 - Placed on 5 planes
 - Mainly record the direct sound from sound sources
- 10 Amplifiers
 B&K: Type 2694

IUCS 2010

Arrangement of Microphones

Radiated Loudspeaker Array

- Rectangular enclosure
 - Size...1/4 of surrounding microphone array
 - Material...Plywood and aluminum panels
- 157 loudspeaker units
 - AURASOUND:
 - NSW1-205-8A suitable
 - Attached to 5 planes
 - Size...1 inch
 - Directivity
 - Towards outside
- Amplifier
 - Custom-made (157ch)

Arrangement of Loudspeaker Units

0.0975 m

0.055 m

0.125 m

1.145 m

 \bigcirc

⊖ 0.125 m

0

0.125 m

 \bigcirc

Wall B

0.125 m

Ş

 \bigcirc

0.7 m

0.0725 n

- Interval...0.125 m
- Wall A
 - 2 planes20 (=5×4)
- Wall B
 - 2 planes
 - 36 (=9×4)
- Ceiling
 - 1 plane
 - 45 (=9×5)
- Elevated by 0.7 m

Ceiling

0.555 m

Wall A

0.695 m

0.0975 m

 О

0

 \bigcirc

0

 $\left(\right)$

0

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Simulation Environment

- Original sound field
 - Free space
 - 157 microphones
 - 30 sound sources
- Reproduced sound field
 - Free space
 - 157 loudspeaker units
 - 17 Observation points

Synthesis of Recorded Signals

- Sound source signal s(t)

 Octave-band noise (central frequency f_{cent})
- Signal of *i*th microphone $x_i(t)$

$$\boldsymbol{x}_{i}(t) = \boldsymbol{g}_{i}(t) * \boldsymbol{s}(t) = \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{0}|} \boldsymbol{s}\left(t - \frac{|\boldsymbol{r}_{i} - \boldsymbol{r}_{0}|}{c}\right)$$

- *: Convolution operation
- $-\mathbf{r}_{i}$: Position vector of *i*th microphone
- $-\mathbf{r}_{0}$: Position vector of sound sources
- c: Sound velocity

Synthesis of Sound Pressure

Sound pressure in observation points
 p(R_j, f_{cent}, t)

$$p(\mathbf{R}_{j}, f_{\text{cent}}, t) = \sum_{i=1}^{M} \frac{D_{si}}{|\mathbf{R}_{j} - \mathbf{r}_{i}|} x_{i} \left(t - \frac{|\mathbf{R}_{j} - \mathbf{r}_{i}|}{c} \right)$$
$$= \sum_{i=1}^{M} \frac{D_{si}}{|\mathbf{R}_{j} - \mathbf{r}_{i}| |\mathbf{r}_{i} - \mathbf{r}_{0}|} s \left(t - \frac{|\mathbf{R}_{j} - \mathbf{r}_{i}| + |\mathbf{r}_{i} - \mathbf{r}_{0}|}{c} \right)$$

- $-\mathbf{R}_{i}$: Position vector of *j*th observation point
- *M*: Total number of loudspeaker units
- D_{si} : Radiation directivity of *i*th loudspeaker unit

Calculation of Sound Intensity

- Direction of sound intensity vector
 - Corresponds to arrival direction of sound sources $I(\mathbf{R}_{i}, f_{\text{cent}}) = \left\{ I_{x}(\mathbf{R}_{i}, f_{\text{cent}}), I_{y}(\mathbf{R}_{i}, f_{\text{cent}}), I_{z}(\mathbf{R}_{i}, f_{\text{cent}}) \right\}^{T}$
- Calculation by cross-spectral method
 - 3 directions are calculated from sound pressures at 6 points
 - Sound pressure: $p(\mathbf{R}_{jx}^{+}, f_{\text{cent}}, t), p(\mathbf{R}_{jx}^{-}, f_{\text{cent}}, t), p(\mathbf{R}_{jy}^{+}, f_{\text{cent}}, t), p(\mathbf{R}_{jz}^{+}, f_{\text{cent}}, t), p(\mathbf{R}_{jz}^{-}, f_{\text{cent}}, t), p(\mathbf{R}_{jz}^{-}, f_{\text{cent}}, t), \mathbf{R}_{jx}^{\pm} = \mathbf{R}_{j} \pm (\Delta, 0, 0)^{T}$ $\mathbf{R}_{jy}^{\pm} = \mathbf{R}_{j} \pm (0, \Delta, 0)^{T} \Delta = 0.001 \text{ m}$ $\mathbf{R}_{jz}^{\pm} = \mathbf{R}_{j} \pm (0, 0, \Delta)^{T}$

Block Diagram of SI Calculation

Parametric Conditions

Central frequency (f_{cent})	250, 500, 1000 Hz
Lower frequency (f_{low})	f _{cent} ÷sqrt(2)
Upper frequency (f_{up})	f _{cent} ×sqrt(2)
Sound velocity(c)	340 m/s
Number of loudspeaker units (<i>M</i>)	157
Radiation directivity of loudspeaker units (D_{si})	Omnidirectional, Decay20dB, Unidirectional, Shotgun

Radiation Directivity of Loudspeakers

Estimation of Sound Image Position

Estimated position of sound images r_

$$\mathbf{r}_{E} = \frac{1}{FN} \sum_{f_{cent}}^{250,500,1000} \sum_{j=1}^{N} \left\{ \mathbf{R}_{j} - \frac{\mathbf{I}(\mathbf{R}_{j}, f_{cent})}{p(\mathbf{R}_{j}, f_{cent})} \right\}$$

- R: Position vector of *j*th observation point
- $I(\mathbf{R}_{i}, f_{cent})$: Sound intensity at \mathbf{R}_{i}
- $p(\mathbf{R}_{i}, f_{\text{cent}})$: RMS of sound pressure at \mathbf{R}_{i} $p(\mathbf{R}_{j}, f_{\text{cent}}) = \sqrt{\frac{1}{T} \int_{0}^{T} \left\{ p(\mathbf{R}_{j}, f_{\text{cent}}, t) \right\}^{2} dt}$ - T: Period
- F(=3): Number of octave-band noises
- N: Number of observation points
 - All observation points, 4 observation points near source

Estimated Position (All Points)

- If radiation directivity is sharpened
 - Sound images are accurately estimated
 - Listeners can accurately localize sound images at any listening position around loudspeaker array

IUCS 2010

Estimated Position (4 Points Near Source)

- Even if radiation directivity is not sharpened
 - Sound images are approximately estimated
 - Listeners can accurately localize sound image close to listening position

IUCS 2010

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Room Impulse Response Measurement

- Omnidirectional loudspeakers are placed at 30 positions in the surrounding microphone array room
- Background noise level
 - 18.4 dB(A)
- Reverberation time
 - 150 ms
- Room temperature
 20°C
- Sound pressure level
 - 85.6 dB(A) at 1m distance from loudspeakers

0.5 m

0.59 m

3.38 m

0.5 m

0.69 m

Ζ

5.18 m

1 m

0.52 m

Omnidirectional Loudspeaker

1 m

1 m

1 m

• Microphone

RIR Measurement Conditions

- TSP signal
 - Sampling frequency...48 kHz
 - Quantization bits...16 bits
 - Length...65536 samples
- FIR filter
 - Length...14400 taps
 - Number of synchronous repetitions...16
 - Sampling frequency is regarded as 192 kHz
 - match the size of surrounding microphone array to that of radiated loudspeaker array
 - Reverberation time...about 37.5 ms (1/4 of 150 ms)

Synthesis of 157 Channel Signals

- Convolve measured room impulse responses to sound source signals
- Sound source signal
 - Octave-band noise
 - Central frequency...250, 500, 1000 Hz
 - Sampling frequency...48 kHz
 - Quantization bits...16 bits
 - Length...10 s
 - Time of fade-in and fade-out...1 ms
- Room Impulse response
 - Transformed to 48 kHz before synthesis

Measurement of Sound Intensity

- Synthesized 157ch signals are played by the radiated loudspeaker array and sound intensity probes are placed at 17 positions
- 0.1525 m Background noise level x 0.75 m 0.75 m 1.145 m $-22 \, dB(A)$ 0.5 m • Reverberation time .1775 m 0.195 m 0/ O - 180 ms 0.1775 m 0.695 m 0.5 m Room temperature $-22^{\circ}C$ 0.1525 m
- Sound pressure level · Loudspeaker Unit × Sound Intensity Probe
 - 71 dB(A) at 1 m from central sound image

Estimation of Sound Image Position

Estimated sound image position r_{_}

$$\mathbf{r}_{E} = \frac{1}{FN} \sum_{f_{cent}}^{250,500,1000} \sum_{j=1}^{N} \left\{ \mathbf{R}_{j} - \frac{\mathbf{I}(\mathbf{R}_{j}, f_{cent})}{p(\mathbf{R}_{j}, f_{cent})} \right\}$$

- $-\mathbf{R}_{j}$: Position vector of *j*th sound intensity probe
- $I(\mathbf{R}_{j}, f_{ent})$: Sound intensity at \mathbf{R}_{j}
- $p(\mathbf{R}_{j}, f_{\text{cent}})$: Sound pressure at \mathbf{R}_{j}
- F(=3): Number of octave-band noises
- *N*: Number of sound intensity probes
 - All sound intensity probes
 - 4 sound intensity probes near source

Estimated Sound Image Position

- All sound intensity probes
 - Estimated positions are biased to the center
- 4 sound intensity probes near source
 - Sound images are approximately estimated
- Listeners can accurately localize sound image close to listening position

- Introduction
 - Ultra-realistic communication
 - Wave field synthesis system
- Diagram of proposed system
- Developed system
- Evaluation of developed system
 - Computer simulation
 - Acoustical measurement
- Conclusion

Conclusion

- Evaluation of the performance of the sound image localization in the developed system
 - The positions of sound images were estimated by computer simulation and acoustical measurement
 - If the radiation directivity is sharpened, listeners can accurately localize sound images in any listening position
 - Even if the radiation directivity is not sharpened, listeners can accurately localize the sound image close to the listening position
- Future works
 - Development of a system with better performance in a real environment by sharpening the radiation directivity of the loudspeaker units

