

# EA研究会 異なる放射特性を持つ球形スピーカ による再生音場の数値解析 ~音源探査による演奏者の音像の 大きさと形の推定~

木村敏幸,山肩洋子,勝本道哲(NICT)



## 超臨場感構築基盤技術の研究開発

- 何を目指すのか?
   あたかもその場にいる かのような自然でリア ルなコミュニケーション
  - ・電子ホログラフィ
  - 映像•音響統合化技術
- ・どんな特徴か?
  - 近接した周りの位置で テレビやコンサートを鑑賞











EA研究会



- 収録部屋 - 残響時間...180 ms
- 演奏者
   尺八奏者1名
   アコギ奏者2名
- ・マイクロホン
  - DPA: 4060
  - 半径…0.8 m
  - 各演奏者の周りに26個ずつ





#### 球形スピーカによる三重奏の表現

- デモ展示(NAB Show, CEATEC JAPAN)
   スピーカに演奏者がいるような音響表現
   スピーカの間に立つと 演奏者の間にいるよう
  - スピーカの間に立つと、演奏者の間にいるよう な音響表現



### 本報告の目的

- 球形スピーカによって再生される放射音場
   を計算機シミュレーションで数値的に解析
- ところで、1人の演奏者が発する音源の数は1個だけではない
  - 楽器の発音源
    - ・弦自身の発振, 共鳴胴からの放射など(弦楽器)
  - 演奏者の発音源
    - 衣擦れの音, 足を踏み鳴らす音など
- 演奏時にはさまざまな場所で複数の音源
   が音を鳴らしている



#### 本報告の目的

- ・球形スピーカによって再生された際, 複数 音源がどこにあるかを推定
  - 演奏者が出す音像の大きさや形の変化が評価できるのでは?

- ・ 音源探査技術を用いて複数の点音源の位置
   を推定
  - 球形スピーカによる演奏者の音像の大きさと 形の変化を評価



シミュレーション環境

- *M*(=26)個のマイクロホン
   r<sub>i</sub>: 半径r(=0.8 m)の球面上
- *M*(=26)個のスピーカユニット \_ **r**'<sub>*i*</sub>: 半径r'(=0.085 m)の球面上
- $\mathbf{r}_{i} = \begin{pmatrix} r \cos \theta_{i} \cos \phi_{i} \\ r \sin \theta_{i} \cos \phi_{i} \\ r \sin \phi_{i} \end{pmatrix} \mathbf{r}'_{i} = \begin{pmatrix} r' \cos \theta_{i} \cos \phi_{i} \\ r' \sin \theta_{i} \cos \phi_{i} \\ r' \sin \phi_{i} \end{pmatrix}$ 
  - N(=162)点の観測点
    −r: 半径R(=1 m)の球面上





マイクロホン、スピーカユニットの角度

| i | $\theta_i$ [°] | <i>φ</i> <sub>i</sub> [°] | i  | $\theta_i$ [°] | $\phi_i$ [°] | i  | $\theta_i$ [°] | φ <sub>i</sub> [°] |
|---|----------------|---------------------------|----|----------------|--------------|----|----------------|--------------------|
| 1 | 0              | 0                         | 9  | 0              | 45           | 18 | 0              | -45                |
| 2 | 45             | 0                         | 10 | 45             | 30           | 19 | 45             | -30                |
| 3 | 90             | 0                         | 11 | 90             | 45           | 20 | 90             | -45                |
| 4 | 135            | 0                         | 12 | 135            | 30           | 21 | 135            | -30                |
| 5 | 180            | 0                         | 13 | 180            | 45           | 22 | 180            | -45                |
| 6 | -135           | 0                         | 14 | -135           | 30           | 23 | -135           | -30                |
| 7 | -90            | 0                         | 15 | -90            | 45           | 24 | -90            | -45                |
| 8 | -45            | 0                         | 16 | -45            | 30           | 25 | -45            | -30                |
|   | <u>.</u>       |                           | 17 |                | 90           | 26 |                | -90                |



#### マイクロホンで収録する信号の合成

- 音源信号s(*t*)
  - -振幅A,周波数fの正弦波
- 収録信号x<sub>i</sub>(t)

$$x_{i}(t) = \frac{1}{d_{i0}} s\left(t - \frac{d_{i0}}{c}\right) = \frac{A}{d_{i0}} sin\left\{2\pi f\left(t - \frac{d_{i0}}{c}\right)\right\}$$

- $-d_{i_0}(=|\mathbf{r}_i-\mathbf{r}_0|): 音源からマイクロホンまでの距離$
- r; マイクロホンの位置ベクトル
- **r**<sub>0</sub>: 音源の位置ベクトル

- c: 音速



観測点における音圧の合成

観測点rにおける音圧p(r,f,t)

$$p(\mathbf{r}, f, t) = \sum_{i=1}^{M} \frac{D_{si}}{d_i} x_i \left( t - \frac{d_i}{c} \right)$$
$$= \sum_{i=1}^{M} \frac{D_{si} A}{d_i d_{i0}} \sin \left\{ 2\pi f \left( t - \frac{d_i + d_{i0}}{c} \right) \right\}$$

- *M*: スピーカユニットの総数 - *d*<sub>*i*</sub>(=|**r**<sub>*i*</sub>-**r'**<sub>*i*</sub>): スピーカユニット- 観測点間距離 - **r'**<sub>*i*</sub>: スピーカユニットの位置ベクトル - *D*<sub>si</sub>: スピーカユニットの放射指向特性



音響インテンシティの算出

- 音響インテンシティベクトルの方向
  - 単一音源の到来方向に相当  $I(\mathbf{r},f) = \left[I_x(\mathbf{r},f), I_y(\mathbf{r},f), I_z(\mathbf{r},f)\right]^T$
- ・クロススペクトル法により算出
  - -6点の音圧から3方向を算出
    - 音圧:  $p(\mathbf{r}_{x}^{+}, f, t), p(\mathbf{r}_{x}^{-}, f, t), p(\mathbf{r}_{y}^{+}, f, t), p(\mathbf{r}_{y}^{-}, f, t), p(\mathbf{r}_{y}^{-}, f, t), p(\mathbf{r}_{z}^{-}, f, t),$

$$\mathbf{r}_{x}^{\pm} = \mathbf{r} \pm (\Delta, 0, 0)^{T}$$
  
$$\mathbf{r}_{y}^{\pm} = \mathbf{r} \pm (0, \Delta, 0)^{T} \Delta = 0.001 \text{ m}$$
  
$$\mathbf{r}_{z}^{\pm} = \mathbf{r} \pm (0, 0, \Delta)^{T}$$



音響インテンシティ算出のブロック図



パラメータ条件

| 音源振幅(A)                                       | 1                                                  |  |  |  |
|-----------------------------------------------|----------------------------------------------------|--|--|--|
| 音源周波数(f)                                      | 125, 250, 500, 1000, 2000,<br>4000, 8000, 16000 Hz |  |  |  |
| 音源位置( <b>r</b> ₀)                             | $(d\cos\theta_0, d\sin\theta_0, 0)^{T}$            |  |  |  |
| 音源距離(d)                                       | 0, 0.2, 0.4, 0.6 m                                 |  |  |  |
| 音源方位角( $\theta_0$ )                           | 0, 45°                                             |  |  |  |
| 音速(c)                                         | 340 m/s                                            |  |  |  |
| スピーカユニットの<br>法線ベクトル( <b>n</b> ,)              | <b>r'</b> <sub>i</sub> /  <b>r'</b> <sub>i</sub>   |  |  |  |
| スピーカユニットの<br>放射指向特性( <i>D</i> <sub>si</sub> ) | Omnidirectional, Decay 6 dB,<br>Decay 12 dB, Real  |  |  |  |



#### スピーカユニットの放射指向特性





- 推定した音像位置 $\mathbf{r}_{E}$  $\mathbf{r}_{E} = \frac{1}{FN} \sum_{f} \sum_{j=1}^{N} \left\{ \mathbf{r}_{j} + \frac{\mathbf{I}(\mathbf{r}_{j}, f)}{p(\mathbf{r}_{j}, f)} \right\}$ 
  - N(=162), F(=8): 観測点, 周波数条件の数 -  $\mathbf{r}_{j}$ , 新日の観測点の位置ベクトル -  $\mathbf{l}(\mathbf{r}_{j}, f)$ :  $\mathbf{r}_{j}$ における音響インテンシティ -  $p(\mathbf{r}_{j}, f)$ :  $\mathbf{r}_{j}$ における平均二乗音圧  $p(\mathbf{r}_{j}, f) = \sqrt{\frac{1}{T} \int_{0}^{T} \{p(\mathbf{r}_{j}, f, t)\}^{2} dt}$ - T: 周期







### 推定した音像位置(Real)

















まとめ

- 球形スピーカで再生される放射音場を計 算機シミュレーションで数値的に解析
- ・ 音源探査技術で複数の点音源の位置を推定し、演奏者の音像の大きさと形を評価
  - 全体的な大きさは球形スピーカに縮小
  - 個々の点音源の大きさは非常に大きくなる
  - スピーカユニットの放射指向特性をより鋭くす れば, 音像の形は正しく保持される
- ・今後の課題
  - 点音源が放射指向特性を持つ場合の検討

