

EA研究会, 聴覚研究会

指向性スピーカと波面合成法を用いた 近接三次元音場再生システムの 性能比較評価

木村敏幸¹, 山肩洋子², 勝本道哲¹, 岡本拓磨³, 矢入聡⁴, 岩谷幸雄³, 鈴木陽一³ ¹NICT, ²京都大学, ³東北大学, ⁴仙台高専

超臨場感コミュニケーション

- "未来の"3Dテレビ
 –リビングで鑑賞
 –目の前に対象物がある
 –メガネがいらない
- 立体遠隔通信会議
 一同じ場所で会議
 - 目の前に相手がいる
 - メガネがいらない
- 波面合成法に着目

"周囲から聴く"立体音響システム

- 今までの波面合成システム - 聴取者の周りにスピーカーを配置
- 提案する波面合成システム
 - 音源の周りにスピーカーを配置

Conventional System Proposed System The pianist The violinist is playing_ (near me! k near me

EA研究会, 聴覚研究会

is playing

本報告の目的

 指向性スピーカと波面合成法を用いた近 接三次元音場再生システム

- 今までに提案し, 実装

- ・実装したシステムの音像定位性能の評価
 - 音像位置推定を実施し、結果を比較
 - ・計算機シミュレーション
 - 音響測定

- 1. 境界面上のマイクロホンで音を収録
- 2. 境界面上の指向性スピーカで音を再生
- 3. アレイの外側の音場が再現
- 4. アレイの内側で音が鳴っているように感じる

包囲型マイクロホンアレイ

- 東北大学電気通信研究所の設備を利用
 - 残響時間
 - 150 ms
 - 防音加工
 - 壁面に吸音マット
 - マイクロホン
 - B&K: Type 4951
 - 157個
 - マイクロホンアンプ
 - B&K: Type 2694
 - 10台(1台あたり16 ch)

• マイクロホン間隔…50 cm

放射型スピーカアレイ

- 新たに製造
 - 大きさ...マイクロホンアレイの1/4
 - スピーカユニット
 - AURASOUND: NSW1-205-8A相当品
 - •157個
 - ・指向特性…外向き
 - スピーカアンプ
 - 特注品 _ 157 ch分

スピーカユニットの配置

- スピーカユニット間隔…12.5 cm
- •狭壁面(Wall A) - 20(=5×4)(2面)
- 広壁面(Wall B) - 36(=9×4)(2面)
- 天井面(Ceiling) - 45(=9×5)(1面)
- 床上げ

-0.7 m

EA研究会, 聴覚研究会

2010/8/9-10 10

スピーカで再生する信号の合成

- 音源信号s(t)
 オクターブバンドノイズ(中心周波数f_{cent})
- i番目のスピーカ信号x_i(t)

$$\mathbf{x}_{i}(t) = \mathbf{g}_{i}(t) * \mathbf{s}(t) = \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{0}|} \mathbf{s} \left(t - \frac{|\mathbf{r}_{i} - \mathbf{r}_{0}|}{c} \right)$$

- *: 畳み込み演算 - **r**_i: マイクロホンの位置ベクトル - **r**_o: 音源の位置ベクトル

- c: 音速

観測点における音圧の合成

- 観測点R_jにおける瞬時音圧p(R_j,f_{cent},t) $p(\mathbf{R}_{j},f_{cent},t) = \sum_{i=1}^{M} \frac{D_{si}}{|\mathbf{R}_{j}-\mathbf{r}_{i}|} x_{i} \left(t - \frac{|\mathbf{R}_{j}-\mathbf{r}_{i}|}{c}\right)$ $= \sum_{i=1}^{M} \frac{D_{si}}{|\mathbf{R}_{j}-\mathbf{r}_{i}||\mathbf{r}_{i}-\mathbf{r}_{0}|} s\left(t - \frac{|\mathbf{R}_{j}-\mathbf{r}_{i}|+|\mathbf{r}_{i}-\mathbf{r}_{0}|}{c}\right)$
 - *M*: スピーカユニットの総数 – *D*_s: スピーカユニットの放射指向特性

- 音響インテンシティベクトルの方向
- 単一音源の到来方向に相当 $I(\mathbf{R}_{j}, f_{cent}) = \left[I_{x}(\mathbf{R}_{j}, f_{cent}), I_{y}(\mathbf{R}_{j}, f_{cent}), I_{z}(\mathbf{R}_{j}, f_{cent}) \right]^{T}$
- ・クロススペクトル法により算出
 - -6点の音圧から3方向を算出
 - 音圧: $p(\mathbf{R}^{\scriptscriptstyle +}_{_{jx}}, f_{_{\text{cent}}}, t), p(\mathbf{R}^{\scriptscriptstyle -}_{_{jx}}, f_{_{\text{cent}}}, t), p(\mathbf{R}^{\scriptscriptstyle +}_{_{jy}}, f_{_{\text{cent}}}, t),$ $p(\mathbf{R}^{\scriptscriptstyle -}_{_{jy}}, f_{_{\text{cent}}}, t), p(\mathbf{R}^{\scriptscriptstyle +}_{_{jz}}, f_{_{\text{cent}}}, t), p(\mathbf{R}^{\scriptscriptstyle -}_{_{jz}}, f_{_{\text{cent}}}, t),$

$$\mathbf{R}_{jx}^{\pm} = \mathbf{R}_{j} \pm (\Delta, 0, 0)^{T}$$

$$\mathbf{R}_{jy}^{\pm} = \mathbf{R}_{j} \pm (0, \Delta, 0)^{T} \Delta = 0.001 \text{ m}$$

$$\mathbf{R}_{jz}^{\pm} = \mathbf{R}_{j} \pm (0, 0, \Delta)^{T}$$

音響インテンシティ算出のブロック図

パラメータ条件

中心周波数(f _{cent})	250, 500, 1000 Hz
下限周波数(f _{low})	f _{cent} ÷sqrt(2)
上限周波数(f _{up})	f _{cent} ×sqrt(2)
音速(<i>c</i>)	340 m/s
スピーカユニットの数(<i>M</i>)	157
スピーカユニットの放射 指向特性(<i>D_{si}</i>)	Omnidirectional, Decay20dB, Unidirectional, Shotgun

スピーカユニットの放射指向特性

・推定した音像位置 $\mathbf{r}_{_{F}}$ $\mathbf{r}_{E} = \frac{1}{FN} \sum_{f_{cent}}^{250,500,1000} \sum_{j=1}^{N} \left\{ \mathbf{R}_{j} - \frac{\mathbf{I}(\mathbf{R}_{j}, f_{cent})}{p(\mathbf{R}_{j}, f_{cent})} \right\}$ - R: *j*番目の観測点の位置ベクトル $-I(\mathbf{R}_{i}, f_{cent})$: R_iにおける音響インテンシティ $-p(\mathbf{R}_{i}, f_{cent}): \mathbf{R}_{i}$ における平均二乗音圧 -T: 周期 $p(\mathbf{R}_j, f_{cent}) = \sqrt{\frac{1}{T} \int_0^T \left\{ p(\mathbf{R}_j, f_{cent}, t) \right\}^2 dt}$ - F(=3): オクターブバンドノイズの数 -N: 観測点の数(全て, 音源に近接した4点)

- 放射指向性が鋭いほど正しく推定
 - 放射指向性が鋭いほど, 聴取者はどの位置 においても常に正しく音像を定位

Omnidirectional

Unidirectional

Decay 20dB

- Input Sound Image
- Estimated Sound Image

- ・どの放射指向性でも大体正しく推定
 - 聴取者は聴取位置で止まって聞けば, 聴取位 置の近くにある音像を常に正しく定位

Omnidirectional

Unidirectional

- Input Sound Image
- Estimated Sound Image

室内インパルス応答の測定

30ヶ所に無指向性スピーカを配置

0.69 m

2.52 m

- 残響時間
 - 150 ms
- 室温
 - $-20^{\circ}C$
- $-18.4 \, dB(A)$
- 1 m 0.59 m 0.52 m 1 m Omnidirectional Loudspeaker

1 m

5.18 m

1 m

・音圧レベル

- 無指向性スピーカより1 mで85.6 dB(A)

0.5 m

⁄р....

0.59 m

ll0.5 m

l3.38 m

0.5 m

γX

0.69 m

Ζ

測定条件

- TSP信号
 - -標本化周波数...48 kHz
 - 量子化ビット...16 bits
 - サンプル長...65536 samples
- FIRフィルタ
 - タップ長…14400点
 - 同期加算…16回
 - 標本化周波数...192 kHzとみなす
 - マイクロホンとスピーカユニットの位置を同じにする
 ため

157チャネル信号の作成

- 音源信号
 - オクターブバンドノイズ
 - 中心周波数...250, 500, 1000 Hz
 - -標本化周波数...48 kHz
 - 量子化ビット...16 bits
 - 長さ…10 s
 - フェードイン&アウト時間…1 ms
- ・室内インパルス応答

- 畳み込み前に48 kHzにリサンプリング処理

音響測定

0.555 m

- ・スピーカアレイ外部の17ヶ所で音響測定
- 残響時間

– 180 ms

• 室温

-22°C

- ・ 暗騒音レベル
 22 dB(A)
- 0.1775 m 0.695 m 0.695 m 0.1525 m 0.1525 m X 0.1525 m X 0.195 m 0.

0.75 m

0.1525 m

î 1.145 m

0.75 m

0.5 m

0.1775 m

0.5 m

0.5 m

- スピーカアレイ中心音像から1 mで71 dB(A)

・推定した音像位置 $\mathbf{r}_{_{F}}$ $\mathbf{r}_{E} = \frac{1}{FN} \sum_{f_{cent}}^{250,500,1000} \sum_{j=1}^{N} \left\{ \mathbf{R}_{j} - \frac{\mathbf{I}(\mathbf{R}_{j}, f_{cent})}{p(\mathbf{R}_{j}, f_{cent})} \right\}$ - R: *j*番目の観測点の位置ベクトル $-I(\mathbf{R}, f_{cent}): \mathbf{R}$ における音響インテンシティ $-p(\mathbf{R}, f_{cent}): \mathbf{R}$ における音圧レベル - F(=3): オクターブバンドノイズの数 - N: 観測点の数(全て, 音源に近接した4点)

- 近接した4点
 スピーカユニットの放射指向性は無指向性
- 全ての点
 - 測定誤差が加味
 - 放射指向性がより鋭ければより良い性能に

まとめ

- 指向性スピーカと波面合成法を用いた近 接三次元音場再生システムを評価
 - 計算機シミュレーションによる音像定位性能
 - 放射指向性が鋭いほどどの場所でも定位できる
 - 鋭くなくても聴取位置近くの音像は定位できる
 - 音響測定による音像定位性能
 - ・放射指向性は全体的に無指向性
 - ・聴取者は聴取位置で止まって聞けば、聴取位置の 近くにある音像を常に正しく定位
- 今後の課題
 - 放射指向性をより鋭くし, 音像定位性能向上

