

Listening Test for Threedimensional Audio System Based on Multiple Vertical Panning

Toshiyuki Kimura and Hiroshi Ando

Universal Communication Research Institute,

National Institute of Information and Communications Technology (NICT), Japan **Ultra-Realistic Communications Technique**

- Realistic 3D video and audio appear in a 3D space by these techniques
- More realistic form of communication 3D telesurgery 3D teleconference

3D television

3D teleshopping 3D remote education

ACOUSTICS 2012 HONG KONG

Large Grasses-free 3D Video Display System

- This system provides parallax videos according to horizontal positions
 - Several people can observe parallax videos according to horizontal viewing positions

Aim of Study

- 3D audio system matched to the developed 3D video display system
- Novel 3D audio system is proposed
 - Based on Multiple Vertical Panning (MVP) method

Basic Configuration of Proposed System

- 2 loudspeakers are placed at the top and bottom of the position of the 3D object
- Sound is played by the "vertical panning"
 Listeners feel that a sound image is played between 2 loudspeakers

Sound Image Position

- Appropriate sound level differences
 - Multiple listeners can
 feel that a sound
 image is played at the
 position of the 3D object

Basic Configuration of Proposed System

- Multiple loudspeaker pairs are placed at the top and bottom of the screen
 - Sound image positions are also expanded to the left-right direction
- Multiple listeners can simultaneously feel multiple sound images at the position of 3D objects - regardless of listening position

Experimental Environment

- ATR variable reverberation room
 - Reverberation time: 140 ms, 1030 ms
 - Background noise level
 - 14 dBA (140 ms), 22 dBA (1030 ms) 140ms 1030ms

Experimental Environment

- 27 loudspeakers are placed in the vertical line
 - Height of array
 - 2.97 m (=11 cm×27)
 - Listening position
 - 5.5 m distance from the array
 - Sound level
 - About 70 dBA

Cross-sectional View

Experimental Condition

- Panning condition
 - Level different sounds are played from 2 loudspeakers
 - Number: 31 (-15dB~15dB, 1dB interval)
 - (a) Panning Condition

₹Up

Experimental Condition

- Control condition
 - Sound is played from 1 loudspeaker selected from 27 loudspeakers
 - Number: 13
 - (b) Control Condition

Experimental Design

Sound source

- White noise, speech and flute

- Duration: 4 seconds
- Subject
 - 12 persons
 - 6 males
 - 6 females
 - Age
 - 21-32
 - Audibility
 - Normal in daily life

- Number of sessions
 - 6 = sound source (3)×reverberation time (2)
 - Presentation order: randomized
- Practice trials
 - 12=(7(panning)+5(control))×1(repetition)
 - Presentation order: randomized
- Main trials
 - 88=(31(panning)+13(control))×2(repetition)
 - Rest period: every set of 44 trials
 - Presentation order: randomized

Experimental Procedure

- Report the perceived height of sound images by listing the 27 index of heights in an answer sheet
 - Index: presented in the right side of loudspeakers
 - If subjects felt multiple sound images, they could list multiple indexes
 - Allowed to move their
 heads and upper bodies
 freely while listening to the

sounds

Analysis of Experimental Result

- Reduce the answers of multiple indexes
- Calculate the perceived height of sound images

$$H_{\rm per}[{\rm m}] = (I_{\rm ans} - 14) \times 0.11$$

- $-I_{ans}$: Answering index of loudspeakers
- $-H_{per}$: Perceived height
 - 1: -1.43 m
 - 14: 0 m
 - 27: 1.43 m

Experimental Results (Panning Condition)

- Level difference: -3~9dB
 - The perceived height linearly changes

Calculation of Panning Curve

 Calculate according to the average of regression lines

$$H_{\text{pan}} = \begin{cases} -1.32 & (\Delta A < -11.05) \\ 0.1065 \Delta A - 0.1437 (-11.05 \le \Delta A \le 13.74) \\ 1.32 & (\Delta A > 13.74) \end{cases}$$

 $-\Delta A$ [dB]: level difference

 Calculate the differential limens of the perceived height

$$DL_{pan}^{+} = \tan(\tan^{-1}(H_{pan}/5.5) + \varphi) \times 5.5$$
$$DL_{pan}^{-} = \tan(\tan^{-1}(H_{pan}/5.5) - \varphi) \times 5.5$$

 $-\phi$ (=9 degrees): differential angle

Experimental Results (Panning Curve)

 There is no average of the perceived height of sound images in the gray area

Experimental Results (Control Condition)

• Flute, reverberation 1030 ms

– There is the average in the gray area

Discussions

- Panning condition
 - 5 condition
 - There is no average of the perceived height of sound images in the gray areas
 - The auditory performance of the panning curve is so high that subjects cannot discriminate the difference between the heights
 - Flute, reverberation time 1030 ms
 - There is the average of the perceived height of sound images in the gray areas
 - Subjects may be able to discriminate the difference between the heights

- Control condition
 - Flute, reverberation time 1030 ms
 - There is the average of the perceived height of sound images in the gray areas
- Subjects may not perceive the height of sound sources itself due to the reverberation time when the sound sources are flute
- It needs to evaluate the effect of the reverberation time by the additional listening test

- Novel 3D audio system is proposed
 - Based on Multiple Vertical Panning (MVP)
 - Match to the large glasses-free 3D video display system
- Evaluation of the auditory performance of the proposed system by the listening test
 - 27 loudspeakers were aligned on the vertical line
 - 5 conditions except the condition (Flute, Reverberation time 1030 ms)
 - Subjects cannot discriminate the difference between the perceived heights of sound images

Evaluation of the effect of the reverberation time by the additional test

– flute and the reverberation time varies

 Evaluation of the effectiveness of the proposed system in an audio-visual system

Technical Requirement of 3D Audio System

- Observers can feel sound images at the position of 3D objects in the free position

 (NOT) stereophonic, 5.1ch system
- Observers don't wear a sound device – (NOT) binaural
- There are no devices between the projector array and the screen
 - (NOT) 22.2ch system, higher order ambisonics, wave field synthesis
- There are no microphones between the screen and the viewing position

– (NOT) transaural, boundary surface control

Motivation of Listening Test

- Proposed system
 - The minimum component is 2 loudspeakers placed at the top and bottom of the screen
 - Auditory performance can be represented by the superposition of minimum components
 - It is enough to evaluate the perceived height of synthesized sound images of 2 loudspeakers
 - Listening test to evaluate the perceived height of synthetic sound images of 2 loudspeakers
 - It is assumed that loudspeakers are placed at the top and bottom of the screen of the large glasses-free 3D video display system
 - The vertical panning curve is also evaluated

Rates of Answers of One Sound Image

- Panning condition
 - Range: level difference -3~9dB
 - There are no significant difference between control conditions
 - Except the condition (speech, RT 140 ms)
 - Rates are always more than 93.9%

